COMPUTATION (LATIT, DIPAT, TIKAIAN LURUS)
Hitungan Latit dan Dipat.
Latit - Perbezaan pada Koordinat Utara/Selatan
- Tanda (+) menunjukkan utara dan (-) menunjukkan selatan
Dipat - Perbezaan pada Koordinat Timur/Barat
- Tanda (+) menunjukkan timur dan (-) menunjukkan barat
- Bering dan jarak yang telah dilaras digunakan untuk menghitung latit dan dipat
Formula Menghitung Latit/Dipat
Latit = J Cos Ө
Dipat = J Sin Ө
Di mana :
J adalah Jarak yang telah dilaras
Ө adalah Bering yang telah dilaras
Sin A = Tentang
Hipotenus
Kos A = Sebelah
Hipotenus
Tan A = Tentang
Hipotenus
Contoh Hitungan Latit/Dipat
Latit
Latit = 37.938 x Cos 345o30’40”
= 36.731
Dipat
Dipat = 37.938 x Sin 345o30’40”
= -9.4928
Contoh Pembukan Hitungan Latit/Dipat
Hitungan Tikaian Lurus
Bertujuan mendapatkan kejituan dalam ukuran
• Had yang dibenarkan mengikut PUK 2002 mestilah tidak
kurang 1 : 8000 untuk ukuran baru dan tidak kurang 1 : 4000
untuk ukuran minima.
• Formula menghitung Tikaian Lurus
Tikaian Lurus = 1 : Jumlah Jarak
√ σ Latit 2 + σ Dipat 2
= 1 : 500.083
√ 0.00522 + 0.03022
= 1 : 16,443
Pelarasan Latit/Dipat
Terdapat dua kaedah yang digunakan iaitu :
- Kaedah Transit
- Kaedah Bowditch
Pelarasan Latit/Dipat
Terdapat dua kaedah yang digunakan iaitu:
Kaedah Transit
- Digunakan bagi terabas yang mana kaedah pengukuran sudut yang diukur mempunyai kejituan lebih tinggi dari kaedah pengukuran jarak.
- Pembetulan berkadaran dengan nilai latit dan dipat. Semakin besar nilai latit/dipat semakin besar pula nilai pembetulanya.
Formula Kaedah Transit
Pelarasan latit 1-2 = (± σlatit x Latit Garisan 1-2 )
Jumlah Kesemua latit
Pelarasan Dipat1-2 = (± σdipat x Dipat Garisan1-2 )
Jumlah Kesemua dipat
Contoh Hitungan Pelarasan Latit dan Dipat Kaedah Bowditch.
Pelarasan latit
Latit 1 = (0.005 x 57.348 ) ÷ 500.083
= 0.001
Latit 2 = (0.005 x 122.807 )÷500.083
= 0.001
Pelarasan Dipat
Dipat1= (-0.030 x 57.348) ÷500.083
= -0.003
Dipat2= (-0.030 x122.807) ÷500.083
= -0.007
Latitude And Departure
Closure of traverse is initiated by computing the latitude and
departure of each line
- The latitude of course is its orthographic projection upon the north-south axis of the survey
- The latitude of course is simply the N component of a line in the rectangular grid system
- The departure of course is its orthographic projection upon the east-west axis of the survey
- The departure of course is simply the E component of line in the rectangular grid system.
Latitude And Departure
- In traverse calculations, latitudes and departures can be either negative (-) or positive (+)
- North latitudes and east departures are considered positive (+)
- South latitudes and west departures are considered negative (-)
Latitude And Departure
In this example, the length of AB is 300 m and bearing is shown in figure below. Determine the coordinates of point 2
Departure P12 = (300) sin (42° 30’)
= 202.677 m
LatitudeP12 = (300) cos (42° 30’)
= 221.183 m
NP2 = 300 + 221.183 = 521.183 m
EP2 = 200 + 202.677 = 402.667 m
Bowditch Adjustment
• The adjustment to the easting component of any traverse side is given by:
dΔEadj=ΔEmisc *sidelength/totalperimeter
ΔNadj=ΔN+/-DΔN
Misclosure In Latitude And Departure
Because of errors in the observation traverse and distances.
The linear error of misclosure (e) represents the distance from the actual location of point 1 to the computed location of point 1.
e=√(Departuremisclosure)2 +(Latitudemisclosure)2
e=√(∑E)2 +(∑N)2
MisclosureIn Latitude And Departure
e = √(∑E)2+ (∑N)2
e = √(-0.013)2+ (-0.713)2
e = 0.713m
Bowditch Adjustment
• The adjustment to the easting component of any traverse side is given by:
dΔEadj=ΔEmisc *sidelength/totalperimeter
ΔNadj=ΔN+/-DΔN
Misclosure In Latitude And Departure
Because of errors in the observation traverse and distances.
The linear error of misclosure (e) represents the distance from the actual location of point 1 to the computed location of point 1.
e=√(Departuremisclosure)2 +(Latitudemisclosure)2
e=√(∑E)2 +(∑N)2
MisclosureIn Latitude And Departure
e = √(∑E)2+ (∑N)2
e = √(-0.013)2+ (-0.713)2
e = 0.713m
nice sir
ReplyDeletecheck balik
ReplyDeletehttps://calcworkshop.com/triangle-trig/sohcahtoa/